Labels Y ~ Bernoulli(p). Scores S in [0,1] from two Beta distributions:
S|Y=1 ~ Beta(a1, b1) and S|Y=0 ~ Beta(a0, b0).
Separation pushes class means apart; noise reduces Beta concentration.
Confusion matrix at threshold t
Actual Y=1
Actual Y=0
Pred Ŷ=1
Pred Ŷ=0
Quick notes
Threshold curves (Sensitivity, Specificity, PPV vs threshold)