Binary Classifier Metrics Demo (N = 100,000): live metrics + ROC + PR + threshold curves

Data generator (synthetic)
Labels Y ~ Bernoulli(p). Scores S in [0,1] from two Beta distributions: S|Y=1 ~ Beta(a1, b1) and S|Y=0 ~ Beta(a0, b0). Separation pushes class means apart; noise reduces Beta concentration.
Confusion matrix at threshold t
Actual Y=1Actual Y=0
Pred Ŷ=1
Pred Ŷ=0
Quick notes
Threshold curves (Sensitivity, Specificity, PPV vs threshold)
ROC curve (TPR vs FPR)
Precision–Recall curve (Precision vs Recall)